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The cusp conditions for the Coulomb- and Correlation-cusp of molecular wave functions
are derived directly in integrated form from the Schrodinger equation. For the Coulomb-cusp
the slope of the wave function at nucleus « is given by the directional derivative
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The magnitude of d remains undetermined, the direction of steepest slope (&, = 0) coincides
with that of the vector of the intramolecular electric field E produced by the other electrons
and nuclei at the position of nucleus .

For the correlation cusp the corresponding directional derivative is shown to be
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Here both the magnitude of ¢ and the direction of the polar axis for the angle « remain undeter-
mined. The special cases of an 1-electron molecule and a 2-electron atom are considered.

Die Bedingungen fiir den Coulomb- und Korrelations-cusp molekularer Wellenfunktionen
werden in integrierter Form direkt aus der Schrédingergleichung abgeleitet. Fiir den Coulomb-
cusp ist die Ableitung der Wellenfunktion am Kern « durch die Richtungsableitung
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gegeben. Der Betrag von d bleibt unbestimms, die Richtung der stérksten Abnahme von
P(H, = 0) stimmt mit der des Vektors des innermolekularen elektrischen Feldes E iiberein,
das von den anderen Elektronen und Kernen am Ort des Kerns o erzeugt wird.

Fiir den Korrelations-cusp ergibt sich die entsprechende Richtungsableitung zu
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Hier bleiben der Betrag von ¢ und die Polarachse fiir den Winkel « unbestimmt. Die Sonder-
fille eines Einelektronenmolekiils und eines Zweielektronenatoms werden diskutiert.

Les conditions de rebroussement pour le rebroussement coulombien et de corrélation des
fonctions d’ondes moléculaires sont déduites directement sous forme intégrée & partir de
I’équation de Schridinger. Pour le rebroussement coulombien la pente de la fonction d’onde
au noyau « est donnée par la dérivée directionelle,
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La valeur de d demeure indéterminée, la direction de plus grande pente (&; = 0) coincide avec

celle du vecteur champ électrique intramoléculaire E produit par les autres électrons et les
noyaux & ’endroit du noyau o.

>r10;=0 =Zu+d-cosd;.
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Pour le rebroussement de corrélation on montre que la dérivée directionnelle correspon-

dante est:
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Dans ce cas la valeur de ¢ aussi bien que la direction de Paze polaire pour 'angle « demeurent
indéterminés. On considére les cas particuliers d’une molécule & 1 électron et d’un atome &
2 électrons.

1. Introduection

In recent years there has been an increasing interest in the behaviour of
molecular wave functions ¥ at those points of configuration space, where two or
more particle positions coincide. For the coalescence of one electron with a nucleus
¥ has a cusp which is due to that singularity of the wave equation where the
corresponding Coulomb attraction term becomes infinite. A similar cusp also
occurs if the positions of two electrons coincide. There is a very simple relation
between the average slope and the value of the wave function at such a singular
point which was first proved rigorously by T. Karo [1]. Later it was conjectured
by the author [2], that these differential cusp conditions are equivalent to the
following integrated expressions:
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Eq. (1) gives the behaviour of ¥ near the Coulomb-cusp at nucleus «, the
vectors r; giving the electron positions measured from that nucleus. For the
correlation cusp of Eq. (2) the »; can be measured from any common origin, and
7o = % (r; + ¥,) is the point of coalescence of electrons 1 and 2.

If in Eq. (1) one averages ¥ over the angle variables ¢, g, and then takes the
derivative with respect to r, for r; = 0, the differential form for the Coulomb-cusp
results. Starting from Egq. (2), a similar procedure yields the differential form of
the correlation cusp.

The earlier work by the author [2] is open to improvement on two counts:
firstly, Eqgs. (1) and (2) were not proved from first principles and secondly, the
vectors @ and ¢ were left undetermined. They occur in the angle-dependant part
of Egs. (1) and (2), which drop out in going over to the differential form because
of the angular averages involved there. They therefore add to our previous knowl-
edge of the behaviour of ¥ in the vicinity of a singularity.

Work on this problem was therefore started by the author with the aim of
deriving Eqs. (1) and (2) directly from the wave equation. The same problem was
considered in a recent paper by Pack and Byers-Browx [3], who derived Egs. (1)
and (2) without however determining the value of the vector coefficients @ and ¢,
which according to them ““are not determined by the Coulomb singularity”. This
statement is quite correct, since the Coulomb singularity does in fact determine
only the spherically symmetric part of the cusp. However, the direction of the
vector @, which gives the direction of smallest (or steepest) slope of the wave funec-
tion is shown to be parallel to the electric field produced by the other electrons and
nuclei at the nucleus in question. This angle-dependant part of the Coulomb-cusp
therefore results from what one may call an intramolecular Stark-effect.
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In the approximation used here, the angle-dependant part of the correlation
cusp remains undetermined. It probably can be obtained only in a higher approxi-
mation.

2, Derivation of the Coulomb-cusp

The Schrodinger equation for a molecule neglecting nuclear motion and spin-
orbit as well as other higher interactions is
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Here the Hamiltonian H has already been partitioned in a way which reflects the
assumed arrangement of electron positions: electron 1 is close to nucleus «, i.e. r1,
is supposed to be small compared to all other distances such as 714, 717 etc. We can
then expand the second term in Eq. (3):
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B#x)
is the vector of the electric field produced by the other nuclei § # « at the position
of nucleus & and
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is the electric field at nucleus « produced by the other electrons j = 2...n. Let
E = E, + E,., we can then rewrite Eq. (3) to give
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In this form the physical interpretation is clear: the n electrons are decomposed
into two parts, electron 1 in the field of nucleus « and the remaining electrons in
the field of all nuclei, but with the nuclear charge of nucleus & reduced by one.
These two parts are coupled by the second term in Eq. (7), which — to first order
in ry,, — represents the effect on electron 1 of the electric field produced by the
other electrons and nuclei. Therefore it gives rise to an intramolecular Stark-
effect of electron 1.
One might be tempted to treat Eq. (7) by conventional perturbation theory in
a similar way as it is done for the Stark-effect in an external electric field. In 0-th
order one then gets
(1) + H'(2...n) — Wgl ¥y =0 (8)
which separates into the two noninteracting parts (¥, = @o* Py)

[h(1) — el po(1) =0 and [H' — (Wg— &)]Py(2...N)=0. (9a, b)



A Physical Interpretation of the Cusp Conditions 57

Since (9a) is just the Schrédinger-equation for a H-like atom, its lowest 1s solution
would give

Y, = (Z3n)'h e~Z,116-By(2. . . N) = Wo(0, vg. .n) (1 — Zp 110 +...)  (9¢)

i.e. the spherically symmetric part of the Coulomb-cusp of Eq. (1). Proceeding in
this way, the 1-st order correction to the unperturbed wave function would then
be determined from

[h(1) + H'(2. .N) — W] PO + pp, EW, =0 (10)

since the 1-st order correction to the energy vanishes. This equation, which
contains the Stark-effect term, would then be expected to give the angle-dependant
term in the cusp condition (1).

Unfortunately, this perturbation treatment does not work. Firstly, the
solutions of Eq. (10) cannot be written in the form p®(1)-@M(2...N), since the
electric field E depends on the coordinates of electrons 2. ..n [see Eq. (6)].

Secondly, even the 0-th order solution (9¢) is incorrect. The explicit expression
for the g@,-part used there obtains only, if the usual boundary conditions for
116 = 0 and 7y, = oo hold for Eq. (9a). But Egs. (7) to (9) were derived by an
expansion, assuming 7y, to be small. Therefore, only the boundary condition at
1, = 0 remains and the correct ¢, is different from the 1s solution.

We therefore use an expansion method which is equivalent to that used by
Pack et al. [3], but take terms up to 7y, into account (two orders more than PAack
et al. uses), in the hope of determining the angle-dependant term of the cusp condi-
tion ().

We now introduce polar coordinates r;, &, ¢, for electron 1 with the origin at
nucleus «, and choose the direction of the polar axis parallel to the total electric
field E. The perturbation term in Eq. (7) then is + ;- -cos ¢;, which has C.,-
symmetry. This is also true of the total Hamiltonian in (7). Therefore, if the total
wave function ¥ is to be different from zero for r; = 0, it must be of symmetry
species > as far as the angles 9,, ¢, of electron 1 are concerned. The expansion of
¥ must then be of the form:

W = Sy, 7y. . 10) Pifcosdy) . (11)
=0

Introducing this expansion into Eq. (7), we get:
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Since ¥ ~ 7% for small r, if ¥ is to be well behaved at r, = 0, the first two terms
(=0 and [ = 1) of (11) are sufficient to derive the cusp condition (1). We there-
fore integrate (12) over the angles ¢y, ¢; to get an equation for ¥y:
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If we first multiply (12) by cos ¢ and then integrate, we get the equation
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for ¥,. Originally, there was also a term with ¥, in (13b), which is proportional to
72 however and can therefore be dropped. The “ansatz”

Yo=Y, 7ry...19) +ar, + b+, .., W, =—P0,7,...17,) r(d+er; +...) (14)

already incorporates our knowledge about the behaviour of ¥; for small r; (see
above). Introducing it into (13a, b), collecting equal powers of r, and setting their
coefficients equal to zero, we get from (13a) for the terms with

(r)tia=—2Z, PO, ry...1ry)
(r)° :b =372+ (H — W) PO, ry. ..rn)

and an expression for the coefficient ¢ from the (r,)l-term. Eq. (13b) gives in the
same way from
(r)t:d—d=0
(r)® te=—% Z,d
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With these values of the coefficients we finally get from (11) and (14)
Y(ry, vy . .1g) = PO, ¥y . .70) (1 — Zy 1y — d+1y cOs ) + O(rd) (15)

i.e. the cusp condition (1).

Our hope of determining the angle-dependant term of the Coulomb-cusp has
only been partially fullfilled: its magnitude — as given by the coefficient d —
remains undertermined, but its direction is indeed shown to lie parallel to the
intramolecular electric field vector E. Together with the magnitude the sign of the
coefficient d is not known. It is physically reasonable however to assume that the
direction of steepest descent of the wave function is the same as the direction of E,
rather than the opposite. With this in mind the signs in Eqgs. (14) and (15) have
been chosen in such a way that the coefficient d itself is positive.

Eq. (13) shows, that the slope of ¥ at nucleus « depends on the direction in
which we take it. This is shown in Fig. 1, where the directional derivative
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is plotted as a polar diagram. As a consequence the level lines ¥ = const. near

nucleus « are not small concentric circles (unless d = 0) but rather small confocal

ellipses with the major axis parallel to the electric field vector E.

This situation can be visualized most easily in the special case of a molecule
with only one electron such as H3". Here the electronic contribution (6) to E
vanishes and the electric field vector E = Ej can easily be obtained from (5) for
all nuclei. Fig. 2 shows the resulting level lines ¥ = const. for the linear, bent and
equilateral geometry of H3*. In the linear case the contributions to Ep from the
end-protons cancel each other. Therefore B, — and presumable also the coefficient
d — vanishes, which leads to a spherically symmetric cusp. On. the other hand
the cusps of the end-protons are angle-dependent in the manner indicated in
Fig. 2. It should be noted, that in the bent form the direction of steepest slope at
the end-protons does not coincide with the bond directions. This results from the
vector addition of the contributions to E from the other two nuclei. For the equi-
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lateral geometry each electric vector points outwards radially. This was to be
expected from reasons of symmetry.

Another case which can be discussed very easily are the atoms with two
electrons. Here E, vanishes, the electronic contribution to the electric field at the
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Fig.1. Polar plot of the directional derivative
(16), giving the slope oi the wave function
in different directions at a Coulomb cusp

arrows give the electric field vector at the three protons

electron 2
£
nucleus
nucleus
Fig. 3 Fig. 4

Fig. 3. Behaviour of ¥ near the nucleus in

2-electron atoms as a function of the posi-

tion of electron 1 for a fixed position of
electron 2

Fig. 4. Behaviour of ¥ near a correlation
cusp as a function of the position of elec-
tron 1. The position of electron 2 is always
diametrically opposite to that of electron 1

Tig. 2. Behaviour of ¥ near the proton of H* for a linear, bent and equilateral geometry as indicated by the lines ¥ = const. The
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nucleus is
E. = 1,r} (17)
and Eq. (15) takes the form

Piry, ro) = PO, v,) [1 — Zry — d(ry) 7y cos Dy,] - (18)

For a fixed position of electron 2, this expression for ¥ is plotted in Fig. 3 as a
function of the position of electron 1. It shows the polarisation of ¥ near the
nucleus, which in another context is also called angular correlation.

For S-states of 2-electron atoms this relation was derived already by the author
[2]. It was also shown there, that in this special case the value of the coefficient
d(r,) is given by

PO, r,) - d(ry) = l (ﬂ>h=o . (19)

ory,

3. The Correlation Cusp

We now consider the situation, where two electrons — say electrons 1 and 2 —
are close to each other. The wave equation can then be partitioned as follows
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Instead of r, and », we now introduce r,= 1(r, + #,) and #, =+, — r, and
expand the terms coupling electrons 1 and 2 to all nuclei and the other electrons,
assuming 7, to be small. We then get
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The physical interpretation of this decomposition is as follows: the first term
describes the relative motion of electrons 1 and 2 around their center of gravity
under the infiuence of their mutual repulsion ; the third term describes the motion
of a “dielectron” of mass 2 and charge —2 in the field of all nuclei and the last
term determines the motion of the remaining electrons 3...#n in the field of all
nuclei, a charge —2 at the point of coalescence of electrons 1 and 2 and their mu-
tual repulsion. It should be noted, that — up to linear terms in r;, — there is no
coupling between the first term and the others in Hq. (21). This has the conse-
quence, that introducing the expansion

P(rs, 0, Ty - ¥n) = P#g, ¥, 73« ) (L L brp+.. ) Frpcosa-(c+...) (22)

into (21) we do get the expected result b = +3, but neither the coefficient ¢ nor
the direction of the polar axis z for the angle « = (2, ,,) are determined. We
have shown however that the integral form of the correlation cusp condition (2)
follows indeed directly from the wave equation.
For the special case of 2-electron atoms we can get more detailed information.
Here (21) simplifies to
[hys + O(rf) + hg — W1 P(rry, 75) = 0 (23)
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and ¥ = @(ry)-x(ry,) to the same order, where the two factors are solutions of

(hip—8) =0, [Bg— (W —~&)]p=0 (24a, b)
respectively. It can be shown, that the relation
Ll =10, +1 (25)

holds for the vector operators of angular momentum in this case. If ¥ is to be an

eigenfunction of Ir, @ and y must be eigenfunctions of Zﬁ and ffz respectively. For
an S-state the solution must have the form

¥ = @s(r) %s(r12) + Po(ro) xp(r1a) +- .. (26)

Using the explicit form of Eq. (24a), and its solutions for small »,,, it is then easy
to show, that

Y(ry, 15) = @s(rg) 75(0)- (1 + % 715 +. . .) - @p(#o) -const. 745 cOs & +. . . (27)

This has the form of Eq. (2). Furthermore, it was shown earlier [2] that the polar
axis of the angle « coincides in this case with the position vector #, of the point of
coalescence of the two electrons and (27) takes the final form

Pry, 72) = @s(rg) 15(0) - (1 + 3 739) -+ 71577 (1) + Or3) - (28)
The lines ¥ = const. in the vicinity of the correlation cusp (see Fig. 4) are again
confocal ellipses with the major axis parallel to the vector #,.
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