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T h e  cusp conditions for the  Coulomb- and  Correlation-cusp of molecular wave functions 
are derived directly in integrated form from the  SchrSdinger equation. For  the  Coulomb-cusp 
the  slope of the  wave function at  nucleus a is given by  the  directional derivative 

- ~ ~-~1~/r1~ = 0 = Z~ + d .  cos ~1. 

The magni tude of d remains undetermined,  the  direction of steepest slope (v~l = 0) coincides 
wi th  t h a t  of the  vector  of the  intramolecular electric field E produced b y  the  other  electrons 
and  nuclei a t  the  position of nucleus a. 

For  the  correlation cusp the  corresponding directional derivat ive is shown $o be 

T ~rl~/rrz = 0 = �89 + c .  cos 0r 

Here bo th  the  magni tude ofc  and  the  direction of the  polar axis for the  angle cr remain undeter-  
mined. The special cases of an  l -electron molecule and  a 2-electron a tom are considered. 

Die Bedingungen ffir den Coulomb- und  Korrelations-cusp molekularer Wellenfunktionen 
werden in integrierter  Form direkt aus der SehrSdingergleichung abgeleitet. Fiir  den Coulomb- 
cusp ist die Ablei tung der Wellenfunktion am Kern  a durch die Richtungsablei tung 

- \~V ~rl~,]rla = 0 = Z a  + d .  cos v~ x 

gegeben. Der Betrag yon d bleibt  unbes t immt,  die Richtung der st~rksten Abnahme yon 
T(val = 0) s t immt  mit  der des Vektors des innermolekularen elektrischen Feldes E iiberein, 
das yon den anderen Elektronen und  Kernen  am Ort des Kerns c~ erzeugt wird. 

l~iir den Korrelations-cusp ergibt sich die entsprechende Richtungsablei tung zu 

0T t + t ~  Or~--7I,,,=o = �89 + c. cos ~ .  

Hier  blciben der Betrag yon c und die Polarachse f i i r  den Winkcl ~ unbestimmt, Die Sonder- 
f~lle eines Einelektronenmolekii ls nnd eines Zweielektronenatoms werden diskutiert, 

Les conditions de rebroussement pour  le rebroussement  coulombien et  de eorr61ation des 
fonctions d 'ondes mol6culaires sont  d6duites directement  sous forme int6gr6e s par t i r  de 
l '6quat ion de SchrSdinger. Pour  le rebroussement  eoulombien la pente  de la fonetion d 'onde 
au noyau ~ est donn6e par  la d6riv60 directionelle, 

S T  

La valour de d demettre ind6termin~e, la direction de plus grande pento (~1 = 0) coincide avec 
eelle du vecteur champ 61ectrique intramol6cMaire E produit  par  les autres ~lcctrons et  les 
noyaux ~ l 'endroi t  du noyau a. 
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Pour ]e rebroussement de correlation on mon~re que la d~riv~e direc~ionnelle correspon- 
dante est: 

"~ arl~-22/r12 = 0 = �89 + c. cos ~.  

Dans ce cas la valour de c aussi bien que Ia direction de l'axe polaire pour l'angle c~ demeurent 
ind~termin@s. On consid&re los cas particuliers d'une mol6cule s I 61ectron et d'un atome 
2 ~lectrons. 

1. Introduction 

In  recent years there has been an increasing interest in the behaviour of 
molecular wave functions W at those points of configuration space, where two or 
more particle positions coincide. For the coalescence of one electron with a nucleus 
~=~ has a cusp which is due to tha t  singularity of the wave equation where the 
corresponding Coulomb attraction term becomes infinite. A similar cusp also 
occurs ff the positions of two electrons coincide. There is a very simple relation 
between the average slope and the value of the wave function at  such a singular 
point which was first proved rigorously by  T. K~,To [1]. Later  it was conjectured 
by  the author [2], tha t  these dif]erential cusp conditions are equivalent to the 
following integrated expressions: 

~ ( r l ,  re , . .  rn) = ~(0,  re , . .  r n ) ' ( l  - Z ~  rl) + r l - a ( r  2. .rn) + O(r~) (~) 

~l(rl, r e . . r n )  : T(ro,  ro, r3. . r n ) ' ( i  + ~ r12) -~ r l e ' c ( r  o, r 3. .rn) -~ O(rl~e) �9 (2) 

Eq. (1) gives the behaviour of T near the Coulomb-cusp at  nucleus ~, the 
vectors r~ giving the electron positions measured from tha t  nucleus. For the 
correlation cusp of Eq. (2) the r~ can be measured from any common origin, and 
r0 = �89 (rl -~ re) is the point of coalescence of electrons ~ and 2. 

I f  in Eq. (~) one averages T over the angle variables ~1, ~1 and then takes the 
derivative with respect to r 1 for r] = 0, the differential form for the Coulomb-cusp 
results. Starting from Eq. (2), a similar procedure yields the differential form of 
the correlation cusp. 

The earlier work by  the author [2] is open to improvement  on two counts: 
firstly, Eqs. (t) and (2) were not proved from first principles and secondly, the 
vectors a and c were left undetermined. They occur in the angle-dependant par t  
of Eqs. (i) and (2), which drop out in going over to the differential form because 
of the angular averages involved there. They therefore add to our previous knowl- 
edge of the behaviour of W in the vicinity of a singularity. 

Work on this problem was therefore started by  the author with the aim of 
deriving Eqs. (~) and (2) directly from the wave equation. The same problem was 
considered in a recent paper by  PACK and BY~RS-BROWN [3], who derived Eqs. (1) 
and (2) without however determining the value of the vector coefficients a and c, 
which according to them "are not determined by  the Coulomb singularity". This 
s tatement  is quite correct, since the Coulomb singularity does in fact determine 
only the sphericully symmetric par t  of the cusp. However,  the direction of the 
vector a, which gives the direction of smallest (or steepest) slope of the wave ihnc- 
tion is shown to be parallel to the electric field produced by  the other electrons and 
nuclei at  the nucleus in question. This angle-dependant par t  of the Coulomb-cusp 
therefore results from what one may  call an intramoleeular Stark-effect. 
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In  the approximation used here, the angle-dependant part of the correlation 
cusp remains undetermined. I t  probably can be obtained only in a higher approxi- 
mation. 

2. Derivation of the Coulomb-cusp 

The SchrSdinger equation for a molecule neglecting nuclear motion and spin- 
orbit as well as other higher interactions is 

rl~,/ \ ~ [ ~  i=2 ~ "Jt~/ 

+ 2 2  - w (3) 
i>j>_2 

Here the Hamiltonian H has already been partitioned in a way which reflects the 
assumed arrangement of electron positions : electron I is close to nucleus ~, i.e. rl~ 
is supposed to be small compared to all other distances such as rl~, ra/etc. We can 
then expand the second term in Eq. (3) : 

where 

E .  = - -  ( 5 )  

is the vector of the electric field produced by the other nuclei/5 v~ ~ at the position 
of nucleus ~ and 

E~ = ~ ~- (6) 
~ 2  ~'.;'~ 

is the electric field at nucleus cr produced by the other electrons ] = 2 . . . ~ .  Let 
E = En + Ee, we can then rewrite Eq. (3) to give 

Z~ Z~ 

- I f +  ~ T - - { h ( l ) + r ~ . E + O ( r ~ ) + H ' ( 2 . . ~ ) - - W ' } g ~ = O .  (7) 
( / ~ )  

In  this form the physical interpretation is clear: the n electrons are decomposed 
into two parts, electron i in the field of nucleus 0r and the remaining electrons in 
the field of all nuclei, but  with the nuclear charge of nucleus ~ reduced by one. 
These two parts are coupled by the second term in Eq. (7), which - -  to first order 
in rz~ - -  represents the effect on electron ~ of the electric field produced by the 
other electrons and nuclei. Therefore it gives rise to an intr~molecular Stark- 
effect of electron I. 

One might be tempted to treat Eq. (7) by conventional perturbation theory in 
a similar way as it is done for the Stark-effect in an external electric field. In  0-th 
order one then gets 

[h(i) + H ' ( 2 . . . n )  -- W~] k~to = 0 (8) 
which separates into the two noninteracting parts (h~t0 = ~o" ~b0) 

[h(l) -- e] q~o(l) = 0 and [H' -- (W o -- s)] ~5o(2...N) = 0 .  (9a, b) 
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Since (9a) is just the Sehr6dinger-equation for a H-like atom, its lowest is  solution 
would give 

T o = (Z~]~)'s e - Z = r ~ . 4 0 ( 2 . . . N )  = ~P'o(O, r 2 . . r n )  (l - Z= rl= + . . . )  (9c) 

i.e. the spherically symmetric par t  of the Coulomb-cusp of Eq. (i). Proceeding in 
this way, the l-st  order correction to the unperturbed wave function would then 
be determined from 

[h(i) + H ' ( 2 . . N )  - W0] ~/(1) + r l . E ~ S o  = 0 (i0) 

since the l -s t  order correction to the energy vanishes. This equation, which 
contains the Stark-effect term, would then be expected to give the angle-dependant 
term in the cusp condition (l). 

Unfortunately,  this perturbation t reatment  does not work. Firstly, the 
solutions of Eq. (t0) cannot be written in the form q(1)(1)-4(1)(2...N), since the 
electric field E depends on the coordinates of electrons 2 . . .  n [see Eq. (6)]. 

Secondly, even the 0-th order solution (9c) is incorrect. The explicit expression 
for the ~v0-part used there obtains only, if  the usual boundary conditions for 
r ~  = 0 and  r1~ = o~ hold for Eq. (9a). But  Eqs. (7) to (9) were derived by  an 
expansion, assuming r,~ to be small. Therefore, only the boundary condition at  
r** = 0 remains and the correct ~v o is different from the is  solution. 

We therefore use an expansion method which is equivalent to tha t  used by  
PaCK et al. [3], but  take terms up to r,~ into account (two orders more than P~r 
et al. uses), in the hope of determining the angle-dependant term of the cusp condi- 
tion (1). 

We now introduce polar coordinates rl, v~l, ~91 for electron I with the origin at  
nucleus c~, and choose the direction of the polar axis parallel to the total  electric 
field E. The perturbation term in Eq. (7) then is A- r l "E ' cos  ~1, which has C~v- 
symmetry.  This is also true of the total  Hamiltonian in (7). Therefore, if the total  
wave function ~ is to be different from zero for r 1 = 0, i t  must  be of symmetry  
species ~ as far as the angles ~1, ~~ of electron I are concerned. The expansion of 

must  then be of the form: 

~1 ~ = ~ }tlz(rl, r , .  . rn)  " Pl(cos v~l). (1 t) 
l=0 

Introducing this expansion into Eq. (7), we get: 

(H -- W) k y = 0 = ~ Pz(cos v~l) - ~ -f -- -t- 

-~- (St '  - -  W ' )  -{- r I E cos ~1 -+- O(r~) ~ l  = 0 .  (12) 

Since ~vz .-- r[ for small r 1 if T is to be well behaved at  r 1 = 0, the first two terms 
(l = 0 and l = 1) of (11) are sufficient to derive the cusp condition (l). We there- 
fore integrate (t2) over the angles ~ ,  ~v~ to get an equation for ~0: 

(H'  - -  W')  ~lYo = -~ t~r~ -I- r, ~r,] o A- ~o  -- -~Erx ~t~ A- O(r l ) .  (13a) 

I f  we first multiply (t2) by  cos v~ x and then integrate, we get the equation 

(Hi  --  W t ) ~[-11 = + 6%~1 -~ rl arl ~ § }[J~ --  Er~ }l~o -t- O(r~) (13b) 
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for k~sl. Originally, there was also a term with ~rs in (13b), which is proportional to 
r~ however and can therefore be dropped. The "ansatz"  

~ o = ~ ( 0 ,  r~. . . rn)  § ar 1 + br~ + . . . .  ~ -- - ~I1(0, r~. . . r n ) ' r z ( d §  + . . . )  (14) 

already incorporates our knowledge about  the behaviour of ~ l  for small r 1 (see 
above). Introducing it into (t3a, b), collecting equal powers of r 1 and setting their 
coefficients equal to zero, we get from (13a) for the terms with 

(rl)-~ : a -- - Z~ T ( 0 ,  r ~ . . .  r~) 

(rl) ~ : b = �89 § (H' -- W')] T(O,  r ~ . . . r n )  

and an expression for the coefficient e from the (rl)l-term. Eq. (t3b) gives in the 
same way from 

(rl)-~: d - d = 0 

(rl) ~ : e = - � 8 9  Z~ a 

t , 1 Z ~] (r~)l : 51 = {-~y6~ (H - W ' )~ (0 )  + ~ ~ / d  - E .  

With these values of the coefficients we finally get from ( t l )  and (t4) 

~ ( r l ,  r 2 .  . . re) = }[1(0, rp.. . . rn)  (1 -- Z~ r I - -  d . r  1 cos v~l) + O(r~) (15) 

i.e. the cusp condition (1). 
Our hope of determining the angle-dependant te rm of the Coulomb-cusp has 

only been partially fullfiUed: its magni tude  - -  as given by  the coefficient d 
remains under,ermined, but  its direction is indeed shown to lie parallel to the 
intramolecular electric field vector E. Together with the magnitude the sign of the 
coefficient d is not known. I t  is physically reasonable however to assume tha t  the 
direction of steeloest descent of the wave function is the same as the direction of E, 
rather  than  the opposite. With  this in mind the signs in Eqs. (14) and (t5) have 
been chosen in such a way tha t  the coefficient d itself is positive. 

Eq. (15) shows, tha t  the slope of W at  nucleus ~ depends on the direction in 
which we take it. This is shown in Fig. 1, where the directional derivative 

- -  ( •  aZ] = Z~ + d cos O~ (16) 
\ ~  ~rl/rl=0 

~x:const. 

is plotted as a polar diagram. As a consequence the level lines T = const, near 
nucleus cr are not small concentric circles (unless d = 0) but  rather  small confocal 
ellipses with the major  axis parallel to the electric field vector E. 

This situation can be visualized most  easily in the special case of a molecule 
with only one electron such as I-I~ +. Here the electronic contribution (6) to E 
vanishes and the electric field vector E = En can easily be obtained from (5) for 
all nuclei. Fig. 2 shows the resulting level lines }//= eonst, for the linear, bent  and 
equilateral geometry of H~ +. In  the linear case the contributions to E b  from the 
end-protons cancel each other. Therefore E b  - -  and presumable also the coefficient 
d ~ vanishes, which leads to a spherically symmetric cusp. On the other hand 
the cusps of the end-protons are angle-dependent in the manner indicated in 
~ig. 2. I t  should be noted, tha t  in the bent  form the direction of steepest slope a t  
the end-protons does not coincide with the bond directions. This results from the 
vector addition of the contributions to E from the other two nuclei. For the equi- 
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Fig. I. Polar p]o% of the directional deMvative 
(16), giving the slope ol the wave function 
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elec/ron 2 

Y 

E 

nucleus 

Fig. 3 Fig. 4 

Fig. 3. Behaviour of ~ near the nucleus in 
2-electron atoms as a function of the posi- 
tion of electron I for a fixed position of 

electron 2 

Fig. 4. Behaviour of ~ near a correlation 
cusp as a function of the position of elec- 
tron 1. The position of electron 2 is always 
diametrically opposite to tha~ of electron 

lateral geometry  each electric vector points  outwards radially.  This  was  to be 
expected  from reasons o f  s y m m e t r y .  

Another  case which  can be discussed very  easi ly are the  a toms  wi th  two  
electrons. Here En vanishes,  the electronic contribution to the  electric field at  the 
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nucleus is 

and Eq. 05 )  takes the form 

hrJ(r 1, r~) = ~P(0, r2) [t  - -  Z r  I - -  d(r~) r 1 c o s  ?~12] �9 ( i S )  

For  a fixed position of  electron 2, this expression for ~ is plot ted in Fig. 3 as a 
funct ion of  the position of  electron I. I t  shows the polarisation of  ~ near the 
nucleus, which in another  context  is also called angular correlation. 

For  S-states of  2-electron a toms this relation was derived already by  the au thor  
[2]. I t  was also shown there, t h a t  in this special case the value of  the coefficient 
d(r2) is given by  

T(O, r~).d(r2) = l ( ~ ) r ~ =  . (19) 

3. The Correlation Cusp 

We now consider the situation, where two electrons - -  say electrons I and 2 - -  
are close to each other. The wave equat ion can then  be part i t ioned as follows 

(H  --  W) ~1 = - �89 1 -~- i 2 )  --  ~ Z• ~ -~- ~ ~- - -  -~ 
r12 /=3 \rl~ 

~ - w )  = 0  
i=3 i>i_3 

Ins t ead  of  r l  and r2 we now introduce r 0 = �89 1 + ru) and r12 = r i  - r2 and 
expand  the  terms coupling electrons I and 2 to M1 nuclei and the other electrons, 
assuming r12 to be small. We then get 

+ ~ • - w }  ~ = {hl~ + o(r~) + h0 + H ' ( 3 . . . ~ )  - W} ~ = o .  (21) 
i>i>__3 r~t 

The physical  in terpreta t ion of  this decomposit ion is as follows: the first t e rm 
describes the relative mot ion  of  electrons i and 2 around their center of  g rav i ty  
under  the influence of  their mutua l  repulsion; the th i rd  term describes the mot ion  
of  a "dielectron" of  mass 2 and charge --2 in the field of  all nuclei and the last 
t e rm determines the mot ion  of  the remaining electrons 3 . . .  n in the field of  all 
nuclei, a charge - 2  at  the  point  of  coalescence of  electrons I and 2 and their mu- 
tual  repulsion. I t  should be noted,  t h a t  - -  up  to  linear terms in r12 - -  there is no 
coupling between the  first t e rm and the others in Eq.  (2t). This has the  conse- 
quence, t h a t  introducing the expansion 

}[I(rl, r2, ra. . .rn) = ~(ro,  to, ra. . . r n ) ' ( l  + br12 + . . . )  + r~2 cos ~.(~ + . . . )  (22) 

into (21) we do get  the expected result  b = +�89 bu t  neither the coefficient c nor  
the  direction of  the polar axis z for the angle ~ = <~(z, rl~) are determined. We 
have shown however  t ha t  the integral  form of the correlation cusp condition (2) 
follows indeed directly f rom the wave equation. 

For  the special case of  2-electron a toms we can get  more detailed information.  
Here  (21) simplifies to 

[h12 + O(r~) + h 0 -- W] ~ ( r l ,  r~) = 0 (23) 
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and T ~ ~v(r0)"z(rl~) to  the same order, where the two factors are solutions of  

( h 1 2 - s )  Z = 0 ,  [h 0 - ( W - e ) ] ~ = 0  (24a, b) 

respectively. I t  can be shown, t h a t  the relation 
A ,~ A A 

f = 11 + 13 = 11~ + 10 (25) 

holds for the vector  operators of  angular m o m e n t u m  in this case. I f  ~ is to be an 

eigenfunction o f / ~ ,  ? and Z must  be eigenfunctions of  l~ and l)2 respectively. For  
an S-state the solution must  have the form 

W = ~s(ro) zs(r12) § ~p(r0) Zp(rl~) §  (26) 

Using the explicit form of Eq. (24a), and its solutions for small rl~ , i t  is then  easy 
to show, tha t  

~ ( r l ,  r2) : 9)s(ro) Zs(O)" (l  -]- i ri 2 _~. . .  ) _[_ q~p(r0 ) -const. r12 cos or - ~ . . .  (27) 

This has the form of Eq. (2). Furthermore,  it was shown earlier [2] t ha t  the polar 
axis of  the angle cr coincides in this case with the position vector  r 0 of  the point  of  
coalescence of  the two electrons and (27) takes the final form 

l r  T(rl,  v~) = ~(ro)Z~(0)" (l + ~ 13) + rl~'ro ~(to) + O(r~) (28) 

The lines T = const, in the vicinity of  the correlation cusp (see Fig. 4) are again 
confocal ellipses with the major  axis parallel to  the vector  r 0. 
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